Home
Class 12
MATHS
Evaluate: int1/(2-3cos2x)\ dx...

Evaluate: `int1/(2-3cos2x)\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int \frac{1}{2 - 3 \cos 2x} \, dx \), we will follow these steps: ### Step 1: Use the half-angle identity for cosine We know that \( \cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x} \). Thus, we can rewrite the integral as: \[ I = \int \frac{1}{2 - 3 \left( \frac{1 - \tan^2 x}{1 + \tan^2 x} \right)} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(1)/(2-3cos2x)dx

Evaluate: int1/(1+3sin^2x)\ dx

Evaluate: int1/(3+sin2x)\ dx

Evaluate: int1/(3+2x-x^2)\ dx

Evaluate: int(1)/(2+cos x)dx

Evaluate: int(1)/(2+cos x)dx

Evaluate: int(2)/(1-cos2x)dx

Evaluate: int(1)/(3+2cos^(2)x)dx

evaluate int(1)/(3-2cos x)dx

Evaluate: int1/(sinx(2cos^(2)x-1))dx