Home
Class 12
MATHS
Evaluate: int1/(1+2cosx)\ dx...

Evaluate: `int1/(1+2cosx)\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int \frac{1}{1 + 2 \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Cosine Function We start by rewriting \( \cos x \) using the half-angle identity. The half-angle identity states that: \[ \cos x = \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} \] Thus, we can express \( 2 \cos x \) as: ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(5+4cosx)\ dx

Evaluate: int1/(cosx-sinx)\ dx

Evaluate: int1/(sinx+cosx)\ dx

int 1/(1+cosx) dx=

int 1/(1+cosx) dx

Evaluate: int (dx)/(1-cosx)

int(1)/(1+cosx)dx=

Evaluate: int1/(3+2sinx+cosx)dx

int(1)/(3+2cosx)dx=

Evaluate int(1-cosx)/(1+cosx)dx .