Home
Class 12
MATHS
Evaluate: intsec^6x\ dx...

Evaluate: `intsec^6x\ dx`

Text Solution

Verified by Experts

`1+tan^2x = sec^2x `
`I = ∫sec^2x sec^4x dx = ∫sec^2x (1 + tan^2x)2dx`
Put `tan x = t` which means `sec^2xdx = dt`,
` I = int (1+ t^2)^2dt`
`= int(1+t^4+2t^2) dt`
`=tanx+frac{tan^5x}{5}+2frac{tan^3x}{3}`
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate intsec^3xdx

intsec^6xdx

intsec^6xdx

Evaluate intsec^6xdx [Here power of secx is even positive integer]

intsec^6x tanx dx

Evaluate : intsec^4 x tan x dx.

Evaluate: intsec^2x/sqrt (1-tan^2x)dx

intsec^(4) x dx

Evaluate: intsec^2x/sqrt (1+tanx)dx

intsec^6xtanxdx