Home
Class 12
MATHS
Evaluate: inttan^3xsec^4x\ dx...

Evaluate: `inttan^3xsec^4x\ dx`

Text Solution

Verified by Experts

`1+tan^2x = sec^2x`
`I = int tan^3x sec^2x sec^2x dx`
` = int tan^3x (1 + tan^2x) sec^2x dx`
Put `tanx = t` which means `sec^2xdx = dt`
`=int t^3(1+t^2)dt`
`=frac{t^5}{5}+frac{t^6}{6}`
`=frac{tan^5x}{5}+frac{tan^6x}{6}`
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate inttan^4xdx

inttan^3xsec^9xdx=?

inttan^3xsec^3xdx=

inttan^3xsec^5xdx=

Evaluate: inttan^3 2x.sec2xdx

int tan^3xsec^2xdx

Evaluate: inttan^-1xdx

inttan^mxsec^4xdx

inttan^3 2xsec 2xdx

inttan^4 xsec^2xdx