Home
Class 12
MATHS
Evaluate: intsqrt(x^2-a^2)\ dx...

Evaluate: `intsqrt(x^2-a^2)\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \(\int \sqrt{x^2 - a^2} \, dx\), we can use trigonometric substitution. Here are the steps to solve the integral: ### Step 1: Trigonometric Substitution We will use the substitution \(x = a \sec(\theta)\). This implies that \(dx = a \sec(\theta) \tan(\theta) \, d\theta\). ### Step 2: Substitute in the Integral Substituting \(x\) and \(dx\) into the integral, we have: \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate: intsqrt(3+2x-x^2)\ dx

Evaluate: intsqrt(x^2-x+1)\ dx

Evaluate: intsqrt(x^(2)-a^(2)) / x dx

Evaluate: intsqrt(cosec^2x-2)dx

Evaluate: intsqrt(x^(2)+2x+5) dx

Evaluate: intsqrt (1-x^2)dx

Evaluate: intsqrt (1+x^2)dx

Evaluate intsqrt(x^(2)+2)=p

Evaluate: intsqrt (1-4x-x^2)dx

Evaluate : intsqrt(x^(2)+2x+1)dx .