Home
Class 12
MATHS
Evaluate: int0^1 1/(sqrt(1+x)+sqrt(x))dx...

Evaluate: `int_0^1 1/(sqrt(1+x)+sqrt(x))dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_0^1 \frac{1}{\sqrt{1+x} + \sqrt{x}} \, dx \), we will follow a systematic approach. ### Step 1: Rationalize the Denominator We start by rationalizing the denominator. We multiply and divide by the conjugate of the denominator: \[ I = \int_0^1 \frac{\sqrt{1+x} - \sqrt{x}}{(\sqrt{1+x} + \sqrt{x})(\sqrt{1+x} - \sqrt{x})} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^1 1/(sqrt(1+x)-sqrtx) dx

int_0^1 1/(sqrt(x+3)-sqrt(x+1)) dx

int_0^1 x/sqrt(1+x)dx

Evaluate : int(1)/(sqrt(x+1)+sqrt(x+2))dx

Evaluate: int(1)/(sqrt(x)+sqrt(x+1))dx

Evaluate: int(1)/(sqrt(x)+4sqrt(x))dx

Find int_0^1dx/(sqrt(x+1)+sqrt(x))

int_0^1 x/sqrt(1+x^2)dx

int_0^1 x/(1+sqrt(x))dx

int_0^1 x/sqrt(1-x^2)dx