Home
Class 12
MATHS
Evaluate: int0^(pi//4)tan^2x dx...

Evaluate: `int_0^(pi//4)tan^2x dx`

Text Solution

AI Generated Solution

To evaluate the integral \( \int_0^{\frac{\pi}{4}} \tan^2 x \, dx \), we can follow these steps: ### Step 1: Use the identity for \( \tan^2 x \) We know from trigonometric identities that: \[ \tan^2 x = \sec^2 x - 1 \] Thus, we can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^(pi//4)tan^3x\ dx

int_(0)^(pi//4) tan x dx

Evaluate: int_0^(pi//2)cos^2x\ dx

Evaluate : int_(0)^(pi//4) tan ^(2) x dx

Evaluate : int_(0)^(pi//4) tan x . sec x dx

Evaluate each of the following integral: int_0^(pi//4)tan^2x\ dx

int_{0}^(pi/4)|tan x|dx

Evaluate int_0^(pi/2) cos^2x dx

int_0^(pi/4) (tanx-x)tan^2xdx

Evaluate :int_(0)^((pi)/(4))(tan x+cot x)^(-2)dx