Home
Class 12
MATHS
Evaluate int0^(pi/2) sin^2x dx...

Evaluate `int_0^(pi/2) sin^2x dx`

Text Solution

Verified by Experts

`int_0^(pi/2) sin^2x dx`
`=1/2int_0^(pi/2)2 sin^2x dx`
We know that
`cos2x=1−2sin^2x`
`=>2sin^2x=1-cos2x`
`=1/2int_0^(pi/2)(1-cos2x)dx`
`=1/2int_0^(pi/2)dx-1/2int_0^(pi/2)cos2x dx`
`=1/2[x]_0^(pi/2)-1/4 [-sin2x]_0^(pi/2)`
`=1/2[pi/2-0]+1/4[sin pi-sin 0]`
`=pi/4+0`
`=pi/4`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_0^(pi/2) sin^7x dx

int_0^(pi/2) sin x dx

Evaluate int_0^(pi/2) cos^2x dx

Evaluate int_0^(pi/2) sin^2x/(sinx+cosx)dx

Evaluate: int_0^(pi/2) sin^2x/(sinx+cosx)dx

Evaluate: int_0^(pi/2) (sin2x tan^(-1)(sinx))dx

Evaluate int_0^(pi//2)(sin^2xdotcos^2x)/((sin^3x+cos^3x)^2)dx

Evaluate: int_0^(pi//2)cos^2x\ dx

int_0^(pi/2) sin x sin 2x dx

Evaluate: int_0^(pi/2) (sin2x)/(sin^4x+cos^4x)dx