Home
Class 12
MATHS
Evaluate: int1^2(logx)/(x^2)dx...

Evaluate: `int_1^2(logx)/(x^2)dx`

Text Solution

AI Generated Solution

To evaluate the integral \( \int_1^2 \frac{\log x}{x^2} \, dx \), we will use integration by parts. ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = \log x \) (which implies \( du = \frac{1}{x} \, dx \)) - \( dv = \frac{1}{x^2} \, dx \) (which implies \( v = -\frac{1}{x} \)) ### Step 2: Apply the Integration by Parts Formula ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(1)^(2)(logx)/(x)dx

Evaluate : int(logx)/(x^(2))dx .

int_(1)^(2)(logx)/(x)dx

int_(1)^(2)(logx)/(x)dx

int(logx)/(x^(2))dx=?

Evaluate: int(logx)/((1+logx)^2)\ dx

Evaluate : (i) int(logx)/(x)dx (ii) int(sec^(2)(logx))/(x)dx (iii) (e^(tan^(-1)x))/((1+x^(2)))dx (iv) int(sinsqrt(x))/(sqrt(x))dx

Evaluate: inte^(3logx)(1+x^4)^-1dx

Evaluate : int_(a)^(b)(logx)/(x) dx .

Evaluate : int(logx)^(2)dx .