Home
Class 12
MATHS
Evaluate the following integral : intpi^...

Evaluate the following integral : `int_pi^(3pi//2)sqrt(1-cos)\ 2x\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_{\pi}^{\frac{3\pi}{2}} \sqrt{1 - \cos 2x} \, dx \), we will follow these steps: ### Step 1: Simplify the integrand We start by using the trigonometric identity: \[ 1 - \cos 2x = 2 \sin^2 x \] Thus, we can rewrite the integral as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

Evaluate the following integral: int_(pi//3)^(pi//2)(sqrt(1+cosx))/((1-cosx)^(3//2))dx

Evaluate the following integral: int_0^(pi//2)sqrt(cos x-cos^3x)"\ "(sec^2x-1)cos^2x\ dx

Evaluate the following integrals int_(0)^(pi//2)cos x dx

Evaluate the following integral: int_1^(2pi)|s in x|dx

Evaluate the following integral: int_(0)^( pi/2)(sin x)/(sqrt(1+cos x))dx

Evaluate the following definite integral: int_(0)^( pi/2)sqrt(1+cos x)dx

Evaluate the following integral: int_(-pi//2)^(pi//2)(2sin|x|+cos x)dx

Evaluate each of the following integral: int_(-pi//2)^(pi//2)cos^2x\ dx