Home
Class 12
MATHS
Evaluate: int0^(pi//2)sqrt(costheta)sin^...

Evaluate: `int_0^(pi//2)sqrt(costheta)sin^3theta`d`theta`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_0^{\frac{\pi}{2}} \sqrt{\cos \theta} \sin^3 \theta \, d\theta \), we can follow these steps: ### Step 1: Rewrite the integral We can express \( \sin^3 \theta \) in terms of \( \sin^2 \theta \): \[ I = \int_0^{\frac{\pi}{2}} \sqrt{\cos \theta} \sin^2 \theta \sin \theta \, d\theta \] Using the identity \( \sin^2 \theta = 1 - \cos^2 \theta \), we rewrite the integral: ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/2) sqrt(sintheta)cos^5theta d theta

Evaluate int_0^(pi/4)sqrt(1+tan^2theta)d theta.

int_0^(pi/2) (a+bsintheta)^3costheta d theta

int_(0)^((pi)/(2))sqrt(costheta)*sin^(3)theta d theta= . . .

sqrt3costheta+sin theta=sqrt2

int(sqrt(cos2 theta))/(sin theta)d theta=

Evaluate: int_(0)^( pi/2)(cos theta)/((1+sin theta)(2+sin theta))dth eta

Show that int_(0)^(2)sqrt((sin2 theta))sin theta d theta=(pi)/(4)