Home
Class 12
MATHS
Evaluate: int0^(pi//4)tan^3x\ dx...

Evaluate: `int_0^(pi//4)tan^3x\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_0^{\frac{\pi}{4}} \tan^3 x \, dx \), we can use the identity for \( \tan^2 x \) and rewrite the integral as follows: ### Step 1: Rewrite the integral We can express \( \tan^3 x \) as \( \tan^2 x \cdot \tan x \): \[ I = \int_0^{\frac{\pi}{4}} \tan^2 x \cdot \tan x \, dx \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/4) tan^3xdx

int_(0)^(pi//4) tan x dx

Evaluate : int_(0)^(pi//4) tan x . sec x dx

int_{0}^(pi/4)|tan x|dx

Evaluate : int_(0)^(pi//4) tan ^(2) x dx

Evaluate: int_0^(pi//4)(sin\ 2x)/(cos^4x+sin^4x)dx

int_0^(pi//4) 2 tan^3 x dx=1-log 2

Evaluate the following integral: int_0^(pi//4)tan^4x\ dx

Evaluate each of the following integral: int_0^(pi//4)tan^2x\ dx

int_0^(pi/4) 2 tan^3 x dx=1-log 2