Home
Class 12
MATHS
dy/dx+y f\'(x)-f(x)f\'(x)=0...

`dy/dx+y f\'(x)-f(x)f\'(x)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of (dy)/(dx)+yf'(x)-f(x).f'(x)=0,y!=f(x) is

The solution of (dy)/(dx)+yf'(x)-f(x).f'(x)=0,y!=f(x) is

The solution of (dy)/(dx)+yf'(x)-f(x).f'(x)=0,y!=f(x) is

The solution of (dy)/(dx)+yf'(x)-f(x).f'(x)=0,y!=f(x) is

The solution of (dy)/(dx)+yf'(x)-f(x).f'(x)=0,y!=f(x) is

Solve: (dy)/(dx)+y*f'(x)=f(x)*f'(x), where f(x) is a given function.

Solve: dy/dx=(y f\'(x)-y^2)/f(x) , where f(x) is a given function of x

If f(x) is differentiable, then the solution of dy+f\'(x)(y-f(x))dx=0 is (A) yf(x)=Ce^(-f(f(x))^2) (B) y+1=f(x)+Ce^(-f(x)) (C) f(x)=Cye^(-y^2/2) (D) none of these

Let y=f(x) satisfies (dy)/(dx)=(x+y)/(x) and f(e)=e then the value of f(1) is

Let y=f(x) satisfies (dy)/(dx)=(x+y)/(x) and f(e)=e then the value of f(1) is