Home
Class 12
MATHS
Evaluate: int0^(pi//2)logtanx\ dx...

Evaluate: `int_0^(pi//2)logtanx\ dx`

Text Solution

Verified by Experts

Let I=`int_0^(pi//2)logtanxdx`
I_1=`int_0^(pi//2)logtan(pi/2-x) dx`
I_1=`int_0^(pi//2)logcotx dx`
I_1=`-int_0^(pi//2)logtanx dx`
`I=−I_1`
⟹I=0
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi//2)log(tanx)dx

Evaluate: int_0^(pi//4)tan^3x\ dx

Evaluate: int_0^(pi//2)cos^2x\ dx

Evaluate: int_0^(pi/2) xcotx dx

Evaluate: int_0^(pi//2)(2logsinx-logsin2x)dx

Evaluate each of the following integral: int_0^(pi//2)logtanx dx

Evaluate : int_0^(pi/2) x sinx dx

Evaluate int_0^(pi/4) secx tanx dx

Evaluate int_0^(pi/2)sinx.log cosx dx

Prove that: int_0^(pi//2)logsinx\ dx=\ int_0^(pi//2)logcosx\ dx=-pi/2log2