Home
Class 12
MATHS
Evaluate: int0^pi1/(1+e^(cosx))dx...

Evaluate: `int_0^pi1/(1+e^(cosx))dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_0^\pi \frac{1}{1 + e^{\cos x}} \, dx \), we can use the property of definite integrals that states: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] ### Step 1: Apply the property of definite integrals ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^(2pi)1/(1+e^(sin x))dx

Evaluate: int_0^pi(e^(cosx))/(e^(cosx)+e^(-cosx))dx

Evaluate: int_0^pi log(1+cosx)dx

Evaluate: int_0^pilog(1+cosx)dx

Evaluate int_(0)^(pi)(e^(cosx))/(e^(cosx)+e^(-cosx))dx .

Evaluate: int_0^(pi//2)(s in x-cosx)/(1+s in xcosx)dx

Evaluate int_0^(pi/2) x/(sinx+cosx)dx

Evaluate: int_0^(pi//2) e^x (sinx-cosx) dx

The value of the integral int_(0)^(pi) (1)/(e^(cosx)+1)dx , is

Evaluate int_0^(pi/2) (sinx-cosx)/(1+sinxcosx)dx