Home
Class 12
MATHS
Evaluate: int(-pi//2)^(pi//2)|sinx|dx...

Evaluate: `int_(-pi//2)^(pi//2)|sinx|dx`

Text Solution

AI Generated Solution

To evaluate the integral \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |\sin x| \, dx \), we can break it down into steps. ### Step 1: Understand the function \( |\sin x| \) The function \( |\sin x| \) is the absolute value of \( \sin x \). We know that: - \( \sin x \) is positive in the interval \( [0, \frac{\pi}{2}] \). - \( \sin x \) is negative in the interval \( [-\frac{\pi}{2}, 0] \). ### Step 2: Split the integral ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(-pi//2)^(pi//2)sin^7x dx

Evaluate : int_(-pi//2)^(pi//2) |sin x|dx

Evaluate: int_(-pi//2)^(pi//2)sin^2x\ dx

Evaluate : (i) int_(-pi//2)^(pi//2)|sinx|dx (ii) int_(-1)^(1)e^(|x|)dx (iii) int_(-2)^(1)|2x+1|dx .

Evaluate : int_(-pi/2)^( pi/2 ) | sinx | dx = ( a ) -2 ( b ) 2 ( c ) -1 ( d ) 1

Evaluate : int_(-pi/2)^( pi/2 ) | sinx | dx = ( a ) -2 ( b ) 2 ( c ) -1 ( d ) 1

Evaluate -int_(3pi//2)^(pi//2)[2sinx]dx , when [.] denotes the greatest integer function.

Evaluate: int_(-pi//2)^(pi//2)1/(1+e^(sinx))dx

int_(pi/3)^(pi/2) sinx dx