Home
Class 12
MATHS
Evaluate: int0^pilog(1+cosx)dx...

Evaluate: `int_0^pilog(1+cosx)dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_0^\pi \log(1 + \cos x) \, dx \), we will use properties of definite integrals and logarithmic identities. Here’s a step-by-step solution: ### Step 1: Use the property of definite integrals We know that: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] For our case, we will apply this property with \( a = \pi \): ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^pi log(1+cosx)dx

Evaluate: int_0^pi1/(1+e^(cosx))dx

Evaluate the following integral: int_0^pilog(1-cos x)dx

Evaluate int_0^(pi/2)cosx/(1+cosx+sinx)dx

Evaluate: int_0^pi(e^(cosx))/(e^(cosx)+e^(-cosx))dx

Evaluate int_0^(pi/2)sinx.log cosx dx

Evaluate : int_(0)^(pi//2)(cosx)/((3cosx+sinx))dx .

Evaluate : int sin^(-1) (cosx) dx .

Evaluate int_0^(pi/2) (sinx-cosx)/(1+sinxcosx)dx

Evaluate: int_0^(200pi)sqrt(1+cosx\ )"dx"