Home
Class 11
CHEMISTRY
For the reaction : CaCO(3)(s) hArr CaO(...

For the reaction ` : CaCO_(3)(s) hArr CaO(s)+CO_(2)(g),K_(p)=1.16atm` at `800^(@)C` . If `20g` of `CaCO_(3)` were kept in a 10 litre vessel at `800^(@)C`, the amount of `CaCO_(3)` remained at equilibrium is `:`

A

`34%`

B

`64%`

C

`46%`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Calculate the moles of CaCO₃ We are given the mass of CaCO₃ as 20 grams and its molar mass is 100 g/mol. \[ \text{Moles of CaCO}_3 = \frac{\text{mass}}{\text{molar mass}} = \frac{20 \text{ g}}{100 \text{ g/mol}} = 0.2 \text{ moles} \] ### Step 2: Set up the equilibrium expression The reaction is: \[ \text{CaCO}_3(s) \rightleftharpoons \text{CaO}(s) + \text{CO}_2(g) \] At equilibrium, let \( x \) be the number of moles of CO₂ produced. The moles of CaCO₃ remaining will be \( 0.2 - x \). ### Step 3: Write the expression for Kp The equilibrium constant \( K_p \) is given by: \[ K_p = \frac{P_{\text{CO}_2}}{1} = 1.16 \text{ atm} \] Since CaO is a solid, it does not appear in the expression. ### Step 4: Relate the pressure to moles of CO₂ Using the ideal gas law, we can find the moles of CO₂ produced at equilibrium: \[ PV = nRT \implies n = \frac{PV}{RT} \] Where: - \( P = 1.16 \text{ atm} \) - \( V = 10 \text{ L} \) - \( R = 0.0821 \text{ L atm/(K mol)} \) - \( T = 800 + 273 = 1073 \text{ K} \) Substituting the values: \[ n = \frac{(1.16 \text{ atm})(10 \text{ L})}{(0.0821 \text{ L atm/(K mol)})(1073 \text{ K})} \] Calculating this gives: \[ n \approx 0.132 \text{ moles of CO}_2 \] ### Step 5: Determine the moles of CaCO₃ remaining Since \( x = 0.132 \) moles of CO₂ are produced, the moles of CaCO₃ remaining will be: \[ \text{Moles of CaCO}_3 \text{ remaining} = 0.2 - 0.132 = 0.068 \text{ moles} \] ### Step 6: Calculate the mass of CaCO₃ remaining To find the mass of CaCO₃ remaining, we multiply the moles by the molar mass: \[ \text{Mass of CaCO}_3 \text{ remaining} = 0.068 \text{ moles} \times 100 \text{ g/mol} = 6.8 \text{ g} \] ### Step 7: Calculate the mass percentage of CaCO₃ remaining The mass percentage of CaCO₃ remaining is calculated as follows: \[ \text{Mass percentage} = \left( \frac{\text{mass remaining}}{\text{initial mass}} \right) \times 100 = \left( \frac{6.8 \text{ g}}{20 \text{ g}} \right) \times 100 = 34\% \] ### Final Answer The amount of CaCO₃ that remains at equilibrium is **6.8 g**, which corresponds to **34%** of the initial mass. ---

To solve the problem, we will follow these steps: ### Step 1: Calculate the moles of CaCO₃ We are given the mass of CaCO₃ as 20 grams and its molar mass is 100 g/mol. \[ \text{Moles of CaCO}_3 = \frac{\text{mass}}{\text{molar mass}} = \frac{20 \text{ g}}{100 \text{ g/mol}} = 0.2 \text{ moles} \] ...
Promotional Banner

Topper's Solved these Questions

  • CHEMICAL EQUILIBRIUM

    RESONANCE|Exercise Solved examples|9 Videos
  • CHEMICAL EQUILIBRIUM

    RESONANCE|Exercise (MSPs)|8 Videos
  • CHEMICAL BONDING

    RESONANCE|Exercise Inorganic chemistry (Chemistry Bonding)|49 Videos
  • D & F-BLOCK ELEMENTS & THEIR IMPORTANT COMPOUNDS

    RESONANCE|Exercise Match the column|1 Videos

Similar Questions

Explore conceptually related problems

For the reaction : CaCO_3(s) hArr CaO(s)+CO_2(g), K_p=1.6 atm at 800^@C .if 20 g of CaCO_3 were kept in a 10 litre vessel at 800^@C , the amount of CaCO_3 that remained at equilibrium is :

For the reaction CaCO_(3)(s) hArr CaO(s) + CO_(2)(g) K_(p)=1.16 atm at 800^(@)C . If 20.0g of CaCO_(3) was put into a 10.0 L flask and heated to 800^(@)C, what percentage of CaCO_(3) would remain unreacted at equilibrium ?

For the reaction CaCO_(3(s)) hArr CaO_((s))+CO_(2(g))k_p is equal to

For the reaction CaCO_(3) (s) hArr CaO (s) + CO_(2) (g), K_(p) = 1*16 " atm . If "20* 0" g of " CaCO_(3) " is heated to " 800^(@)C" in a 10 litre container, what % of "CaCO_(3) " would remain unreached at equilibrium ? ( Mol. wt. of " CaCO_(3) = 100, R = 0*0821 " L atm mol"^(-1) K^(-1) )

For CaCO_(3)(s) hArr CaO(s)+CO_(2)(g), K_(c) is equal to …………..

Write the expression K_p for the reaction : CaCO_3(s) hArr CaO(s) +CO_2(g)

The reaction CaCO_(3)(s) hArr CaO(s)+CO_(2)(g) reaches the state of equilibrium when

Write the expression for K_p for the reaction: CaCO_3(s) hArr CaO(s) +CO_2(g)