Home
Class 12
MATHS
Consider a matrix A=[a(ij)](3xx3), where...

Consider a matrix `A=[a_(ij)]_(3xx3)`, where `a_(ij)={{:(i+j","if","ij=even),(i-j","if","ij=odd):}` if `b_(ij)` is cofactor of `a_(ij)` in matrix A and `c_(ij)=sum_(r=1)^(3)a_(ir)b_(jr)`, then value of `root3(det[c_(ij)]_(3xx3))` is

A

`4`

B

`3`

C

`16`

D

`5`

Text Solution

Verified by Experts

The correct Answer is:
C

`A=[{:(0,3,-2),(3,4,5),(2,5,0):}]because|A|=16`
`thereforec_(ij)=sum_(r=1)^(3)a_(ir)b_(jr)={:{(0, if, i ne j),(|A|, if , i=j):}`
`thereforedet[c_(ij)]_(3xx3)=|A|^(2)=16^(2)`
`thereforeroot3(det[c_(ij)]_(3xx3))=16`
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider a matrix A=[a_(ij)[_(3xx3) where, a_(ij)={{:(i+2j,ij="even"),(2i-3j,ij="odd"):} . If b_(ij) is the cafactor of a_(ij) in matrix A and C_(ij)=Sigma_(r=1)^(3)a_(ir)b_(jr) , then [C_(ij)]_(3xx3) is

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

Construct a matrix [a_(ij)]_(2xx2) where a_(ij)=i+2j

Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

Write down the matrix A=[a_(ij)]_(2xx3), where a_ij=2i-3j

Construct 3xx4 matrix A=[a_(aj)] whose elements are: a_(ij)=i.j

If A=|a_(ij)]_(2 xx 2) where a_(ij) = i-j then A =………….

Find the value of a_(23)+a_(32) in the matrix A=[a_(ij)]_(3xx3) where a_(ij)={{:(|2i-j|,"if "igtj),(-i+2j+3,"if "iltj):}

Given A=[a_(ij)]3xx3 be a matrix, where a_(ij)={i-j if i != j and i^2 if 1=j If C_(ij) be the cofactor of a_(ij), in the matrix A and B = [b_(ij)]3xx3 be a matrix such that bch that b_(ij)=sum_(k=1)^3 a_(ij) c_(jk), then the value of [(3sqrt(det B))/8] is equal to(where denotes greatest integer function and det B denotes determinant value of B)