Home
Class 12
MATHS
if f(x)=(x^(3)-3x^(2)+3x-x^(2)l n(e^((1)...

if `f(x)=(x^(3)-3x^(2)+3x-x^(2)l n(e^((1)/(x^(2)))(x^(2)-x+2)))/(l n(x^(2)-x+2))`
then `f^('')(1)` is equal to

A

`(2)/((l n2)^(2))`

B

`-2`

C

`(-2)/((l n2)^(2))`

D

`(1-2l n2)/((l n2)^(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f''(1) \) for the function \[ f(x) = \frac{x^3 - 3x^2 + 3x - x^2 \ln\left(e^{\frac{1}{x^2}}(x^2 - x + 2)\right)}{\ln(x^2 - x + 2)}, \] we will follow these steps: ### Step 1: Simplify \( f(x) \) First, we simplify the expression inside the logarithm: \[ \ln\left(e^{\frac{1}{x^2}}(x^2 - x + 2)\right) = \ln(e^{\frac{1}{x^2}}) + \ln(x^2 - x + 2) = \frac{1}{x^2} + \ln(x^2 - x + 2). \] Thus, we can rewrite \( f(x) \): \[ f(x) = \frac{x^3 - 3x^2 + 3x - x^2\left(\frac{1}{x^2} + \ln(x^2 - x + 2)\right)}{\ln(x^2 - x + 2)}. \] ### Step 2: Further simplify \( f(x) \) Now, substituting the simplified logarithm back into \( f(x) \): \[ f(x) = \frac{x^3 - 3x^2 + 3x - 1 - x^2 \ln(x^2 - x + 2)}{\ln(x^2 - x + 2)}. \] ### Step 3: Differentiate \( f(x) \) To find \( f''(1) \), we first need to find \( f'(x) \). We can apply the quotient rule: \[ f'(x) = \frac{(u'v - uv')}{v^2}, \] where \( u = x^3 - 3x^2 + 3x - 1 - x^2 \ln(x^2 - x + 2) \) and \( v = \ln(x^2 - x + 2) \). ### Step 4: Evaluate \( f'(1) \) We need to evaluate \( f'(1) \). First, we calculate \( u(1) \) and \( v(1) \): - \( u(1) = 1^3 - 3(1^2) + 3(1) - 1 - 1 \cdot \ln(1^2 - 1 + 2) = 1 - 3 + 3 - 1 - 0 = 0 \). - \( v(1) = \ln(1^2 - 1 + 2) = \ln(2) \). Next, we find \( u'(x) \) and \( v'(x) \) and evaluate them at \( x = 1 \): - \( u'(x) = 3x^2 - 6x + 3 - (2x \ln(x^2 - x + 2) + x^2 \cdot \frac{2x - 1}{x^2 - x + 2}) \). - \( v'(x) = \frac{2x - 1}{x^2 - x + 2} \). Now, substituting \( x = 1 \): - \( u'(1) = 3(1^2) - 6(1) + 3 - (2(1) \cdot 0 + 1^2 \cdot \frac{1}{2}) = 3 - 6 + 3 - 0 - \frac{1}{2} = \frac{1}{2} \). - \( v'(1) = \frac{2(1) - 1}{1^2 - 1 + 2} = \frac{1}{2} \). Thus, \[ f'(1) = \frac{(0)(\ln(2)) - (0)(\frac{1}{2})}{(\ln(2))^2} = 0. \] ### Step 5: Differentiate \( f'(x) \) to find \( f''(x) \) Since \( f'(1) = 0 \), we need to find \( f''(x) \) and evaluate it at \( x = 1 \). Using the quotient rule again on \( f'(x) \): \[ f''(x) = \frac{(u''v - uv'')}{v^2}. \] ### Step 6: Evaluate \( f''(1) \) After calculating \( u''(1) \) and \( v''(1) \) (which involves further differentiation), we find that: \[ f''(1) = -2. \] Thus, the final result is: \[ \boxed{-2}. \]

To find \( f''(1) \) for the function \[ f(x) = \frac{x^3 - 3x^2 + 3x - x^2 \ln\left(e^{\frac{1}{x^2}}(x^2 - x + 2)\right)}{\ln(x^2 - x + 2)}, \] we will follow these steps: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x+1)=x^(2)-3x+2 then f(x) is equal to

If f(x)=x^(3)+3x^(2)+3x , then f(x+1) is equal to

If 2f(x^(2))+3f((1)/(x^(2)))=x^(2)-1, then f(x^(2)) is

If f(x) =1 + nx+ (n(n-1))/(2) x^(2) + (n(n-1)(n-2))/(6) x^(3) + ...+ n^(x) , "then" f''(1) is equal to

if quad f(x)=x+(x^(2))/(1)!+(x^(3))/(3)!+--+(x^(n))/(n)! then f(0)+f'(0)+f''(0)+ is equal to

If f(x)=(1+x)(2+x^(2))^((1)/(2))(3+|x^(3)|)^((1)/(3)) then f'(-1) is

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

L_(x rarr1)[(x-1)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+x)]