Home
Class 12
MATHS
The value of alpha so that sin^(-1)((2)/...

The value of `alpha` so that `sin^(-1)((2)/(sqrt(5)))`, `sin^(-1)((3)/(sqrt(10)))` and `sin^(-1)alpha` are the angles of a Delta is

A

`(1)/(2)`

B

`(sqrt(3))/(2)`

C

`(1)/(sqrt(2))`

D

`(1)/(sqrt(3))`

Text Solution

Verified by Experts

The correct Answer is:
C

`becausesin^(-1)((2)/(sqrt(5)))+sin^(-1)((3)/(sqrt(10)))+sin^(-1)alpha=pi`
`impliestan^(-1)(2)+tan^(-1)(3)+sin^(-1)alpha=pi`
`impliespi-tan^(-1)(1)+sin^(-1)(alpha)=piimpliesalpha=(1)/(sqrt(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of alpha such that sin^(-1)(2)/(sqrt(5)),sin^(-1)(3)/(sqrt(10)),sin^(-1)alpha are the angles of a triangle is (-1)/(sqrt(2))quad ( b ) (1)/(2)(c)(1)/(sqrt(3))(d)(1)/(sqrt(2))

sin^(-1)(1/sqrt5)+cos^(-1)(3/sqrt(10))

If cot^(-1)(sqrt(cos1))-tan^(-1)(sqrt(cos1))=alpha then the value of sin alpha is -

If sin^(-1)(1/sqrt(5)) and cos^(-1)(3/sqrt(10)) are angles in [0,(pi)/(2)] , then their sum is equal to

If cos^(-1)sqrt(cos alpha)-sin^(-1)sqrt(cos alpha)=x, then the value of sin x is

If sin^(-1)[(1)/(sqrt(10))]+sin^(-1)[(2)/(sqrt(85))]+sin^(-1)[(4)/(sqrt(1105))]+....oo= ,then find the value of tan alpha

If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)/2)+cos^(-1)(1/3) then