Home
Class 12
MATHS
If f:RtoR is a function which satisfies ...

If `f:RtoR` is a function which satisfies the condition `f(x)+f(y)=f((x+y)/(1+xy))` for all `x, y in R` except `xy=-1`, then range of `f(x)` is

A

`[0,infty)`

B

`{0,1}`

C

`R`

D

`{0}`

Text Solution

Verified by Experts

The correct Answer is:
D

`f(1)+f(1)=f(1)impliesf(1)=0`
`f(x)+f(1)=f((1+x)/(1+x))=f(1)` for `x ne-1`
`impliesf(x)=0` for all `x ne -1`
also `f(-1)+f(-1)=f(-1)impliesf(-1)=0`
`thereforef(x)=0` for all `x ne R`
`thereforef(x)` is odd as well as even function.
Promotional Banner

Similar Questions

Explore conceptually related problems

If a real valued function f(x) satisfies the equation f(x+y)=f(x)+f(y) for all x,y in R then f(x) is

Let be a real function satisfying f(x)+f(y)=f((x+y)/(1-xy)) for all x ,y in R and xy ne1 . Then f(x) is

A function f:R rarr R satisfy the equation f(x)f(y)-f(xy)=x+y for all x,y in R and f(y)>0, then

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

If f(x) + f(y) = f((x+y)/(1-xy)) for all x, y in R (xy ne 1) and lim_(x rarr 0) (f(x))/(x) = 2 , then

Let f:R^(+)rarr R be a function which satisfies f(x)f(y)=f(xy)+2((1)/(x)+(1)/(y)+1) for x,y>0. Then find f(x)

Let f:R rarr R be a function satisfying condition f(x+y^(3))=f(x)+[f(y)]^(3) for all x,y in R If f'(0)>=0, find f(10)

Let f(x) be a differentiable function which satisfies the equation f(xy)=f(x)+f(y) for all x>0,y>0 then f'(x) equals to