Home
Class 12
MATHS
Evaluate the following integral: int0^1c...

Evaluate the following integral: `int_0^1cos^(-1)x\ dx`

Text Solution

Verified by Experts

Given:`int_0^1cos^(-1)x\ dx`
`I=int_0^1cos^(-1)x\ dx`
`I=int_0^1 1.cos^(-1)x\ dx`
`I=(cos^(-1)x [x])_0^1-int_0^1 -x/(sqrt(1-x^2))dx`
`I=[xcos^(-1)x]_0^1-int_0^1 -x/(sqrt(1-x^2))dx`
Now let `1-x^2=t implies -2xdx=dt implies -xdx=(dt)/2`
When `x=0, t=1`, and when `x=1,t=0`
`I=[1.cos^(-1) (1)-0]-int_1^0 (dt)/(2sqrtt)`
...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integral: int_0^1(cos^(-1)x)^2dx

Evaluate the following integral: int_0^1tan^(-1)x\ dx

Evaluate the following integral: int_0^1log(1/x-1)dx

Evaluate the following integral: int_(0)^(1)cos^(-1)((1-x^(2))/(1+x^(2)))dx

Evaluate the following integral: int_0^1tan^(-1)\ ((2x)/(1-x^2))dx

Evaluate the following integral: int_0^1x t a n^(-1)x\ dx

Evaluate the following integral: int_0^4|x-1|dx

Evaluate the following integral: int_0^3|3x-1|dx

Evaluate the following integrals: int cos^(-1)(sin x)dx

Evaluate the following integral: int_(0)^(1)log(1+x)dx