Home
Class 12
MATHS
If int0^(pi/3)(cosx)/(3+4sinx) dx=k log(...

If `int_0^(pi/3)(cosx)/(3+4sinx) dx=k log((3+2sqrt(3))/3),` then `k` is equal to

Text Solution

Verified by Experts

Given:`int_0^(pi/3)(cosx)/(3+4sinx) dx=k log((3+2sqrt(3))/3)`
We have to find k
`I=int_0^(pi/3)(cosx)/(3+4sinx) dx`
Let `t=3+4sinx implies dt=4cosxdx`
When `x=0 implies t=3` and when `x=pi/3 implies t=3+2sqrt3`
Then
`I=1/4int_3^(3 +2sqrt3) 1/t dt`
...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^((pi)/(3))(cos x)/(3+4sin x)dx=k log((3+2sqrt(3))/(3)) then k is equal to

int_(0)^(pi//6)(cosx)/((3+4sinx))dx

int_0^(pi/2) cosx/sqrt(1+sinx)dx

int_(0)^(pi)(cosx)/(sqrt(4+3sinx))dx is

int_(0)^((pi)/2)(cos^(3)x)/(sinx+cosx)dx

int(sinx+cosx)/(3sinx+4cosx)dx=

int_(0)^(pi)(dx)/((3+2sinx+cosx))