Home
Class 12
MATHS
Evaluate the following integral: int1^3|...

Evaluate the following integral: `int_1^3|x^2-4|dx`

Text Solution

Verified by Experts

Given:`int_1^3|x^2-4|dx`
`I=int_1^3|x^2-4|dx`
`implies` here `f(x) =x^2-4`when `x>=2` or `f(x)= -(x^2-4)` when `x<2`
Then
`I=-int_1^2 (x^2-4)dx +int_2^3(x^2-4)dx`
`I=-[[(x^3)/3]_1^2-4[x]_1^2]+1/3[x^3]_2^3-4[x]_2^3`
`I=4`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integral: int_1^3|x^2-2x|dx

Evaluate the following integral: int_0^3|3x-1|dx

Evaluate the following integral: int_1^2|x-3|dx

Evaluate the following integral: int_(-4)^4|x+2|dx

Evaluate the following integral: int_(-3)^3|x+1|dx

Evaluate the following integral: int_0^4|x-1|dx

Evaluate the following integral: int_1^4{|x-1|+|x-2|+|x-4|}dx

Evaluate the following integral: int_(-1)^2|2x+3|dx

Evaluate the following integral: int_1^2(3x)/(9x^2-1)dx

Evaluate the following integral: int_(-1)^1|2x+1|dx