Home
Class 12
MATHS
Evaluate int0^pi (xsinx)/(1+cos^2x)""...

Evaluate `int_0^pi (xsinx)/(1+cos^2x)""dx`

Text Solution

Verified by Experts

Given: `int_0^pi (xsinx)/(1+cos^2x)dx`
`I=int_0^pi (xsinx)/(1+cos^2x)dx....(i)`
As we know `int_a^b f(x)dx=int_a^b f(a+b-x)dx`
`I=int_0^pi ((pi-x)sin(pi-x))/(1+cos^2(pi-x))dx`
`I=int_0^pi ((pi-x)sinx)/(1+cos^2x)dx.....(ii)`
Now add (i) and (ii) we get
`2I=pi int_0^pi (sinx)/(1+cos^2x)dx`
Let `cosx=t implies dt=−sinxdx`
...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/2) (sinx)/(1+Cos^2x)dx

Prove that int_0^a f(x)dx=int_0^af(a-x)dx , hence evaluate int_0^pi(x sin x)/(1+cos^2 x)dx

Evaluate (i) int_0^pi (x sin x)/(1+cos^2 x) dx Evaluate (ii) int_0^pi (4x sin x)/(1+ cos^2 x) dx

Evaluate: int_0^(pi//2)(s in x)/(1+cos^2x)dx

Evaluate int_(0)^(pi)(xsinx)/((1+cos^(2)x))dx .

Evaluate int _(0)^(pi)(x)/(1+ cos^(2)x)dx .

int_0^(pi/2) (dx)/(1+cos x)

Evaluate: int_0^pi (cos x)/(1+sinx)^2 dx

Evaluate: int_0^pi x/(1+cos^2x)dx

Evaluate: int_0^(pi//2)1/(4sin^2x+5cos^2x)dx