Home
Class 11
PHYSICS
Find coordinates of mass center of a non...

Find coordinates of mass center of a non-uniform rod of length L whose linear mass density lambda varies as lambda=a+bx, where x is the distance from the lighter end.

Text Solution

Verified by Experts

Assume the rod lies along the x-axis with its lighter end on the origin to make mass distribution equation consistent with coordinate system. Making use of eq. , we have
`x_c=int(xdm)/M`rarr `x_c=(int_0^Lxlambdadx)/(int_0^Llambdadx)=(int_0^Lx(a+bx)dx)/(int_0^L(a+bx)dx)=((2bL+3a)L)/(3(bL+2a))`
Promotional Banner

Topper's Solved these Questions

  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-I|40 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-II|43 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise EXERCISE-IV ASSERTION & REASON|11 Videos
  • ELASTICITY, SURFACE TENSION AND FLUID MECHANICS

    ALLEN|Exercise Exercise 5 B (Integer Type Questions)|3 Videos

Similar Questions

Explore conceptually related problems

The centre of mass of a non-uniform rod of length L whose mass per unit length lambda is proportional to x^2 , where x is distance from one end

The centre of mass of a non uniform rod of length L whose mass per unit length lambda = K x^2 // L where K is a constant and x is the distance from one end is (A) (3L)/(4) (B) (L)/(8) (C) (K)/(L) (D) (3K)/(L)

The centre of mass of a non uniform rod of length L whoose mass per unit length varies asp=kx^(2)//L , (where k is a constant and x is the distance measured form one end) is at the following distances from the same end

The centre of mass of a non uniform rod of length L, whose mass per unit length varies as rho=(k.x^2)/(L) where k is a constant and x is the distance of any point from one end is (from the same end)

The centre of mass of a, non uniform rod of length L whose mass per unit length p varies as p = (kx^(2))/(L) where k: is a constant and x is the distance of any point from one end, is (from the same end):

Calculate Centre of mass of a non-uniform rod with linear mass density gamma lambda(mass//"length")=kx^2

A heavy metallic rod of non-uniform mass distribution, is hanged vertically from a rigid support. The linear mass density varies as lambda_((x))=k xx x where x is the distance measured along the length of rod, from its lower end. Find extension in rod due to its own weight.

The density of a linear rod of length L varies as rho=A+Bx where x is the distance from theleft end. Locate the centre of mass.

Find the MI of a rod about an axis through its centre of mass and perpendicular to the length whose linear density varies as lamda = ax where a is a constant and x is the position of an element of the rod relative to it's left end. The length of the rod l .

ALLEN-CENTRE OF MASS-EXERCISE-V B
  1. Find coordinates of mass center of a non-uniform rod of length L whose...

    Text Solution

    |

  2. Two particles of masses m(1) and m(2) in projectile motion have veloci...

    Text Solution

    |

  3. Two blocks of masses 10 kg and 4 kg are connected by a spring of negli...

    Text Solution

    |

  4. A particle moves in the X-Y plane under the influence of a force such ...

    Text Solution

    |

  5. Two small particles of equal masses stant moving in opposite directio...

    Text Solution

    |

  6. Look at the drawing given in the figure which has been drawn with ink ...

    Text Solution

    |

  7. A particle of mass m is projected from the ground with an initial spee...

    Text Solution

    |

  8. A tennis ball dropped on a barizoontal smooth surface , it because bac...

    Text Solution

    |

  9. Two balls , having linear momenta vec(p)(1) = p hat(i) and vec(p)(2) =...

    Text Solution

    |

  10. STATEMENT-l : In an elastic collision between two bodies, the relative...

    Text Solution

    |

  11. Satement-1: if there is no external torque on a body about its centre ...

    Text Solution

    |

  12. A small block of mass M move on a frictionless surface of an inclimed...

    Text Solution

    |

  13. A small block of mass M move on a frictionless surface of an inclimed...

    Text Solution

    |

  14. A small block of mass M move on a frictionless surface of an inclimed...

    Text Solution

    |

  15. Two blocks of masses 2kg and M are at rest on an inclined plane and ar...

    Text Solution

    |

  16. A car P is moving with a uniform speed 5sqrt3 m//s towards a carriage ...

    Text Solution

    |

  17. A particle of mass m, moving in a cicular path of radius R with a cons...

    Text Solution

    |

  18. Two point masses m1 and m2 are connected by a spring of natural length...

    Text Solution

    |

  19. A rectangular plate of mass M and dimension axxb is held in horizonta...

    Text Solution

    |

  20. Three objects A , B and C are kept in a straight line on a smooth hori...

    Text Solution

    |