Home
Class 11
MATHS
The base vectors veca1,veca2,veca3 are g...

The base vectors `veca_1,veca_2,veca_3` are given in terms of base vectors `vecb_1,vecb_2,vecb_3` as `veca_1=2vecb_1+3vecb_2-vecb_3`, `veca_2=vecb_1-2vecb_2+vecb_3` and `veca_3= 2vecb_1+vecb_2-2vecb_3`. If `vecF=3vecb_1-vecb_2+2vecb_3` then express `vecF` in terms of `veca_1, veca_2` and `veca_3`.

Promotional Banner

Similar Questions

Explore conceptually related problems

The base vectors veca_(1), veca_(2) and veca_(3) are given in terms of base vectors vecb_(1), vecb_(2) and vecb_(3) as veca_(1) = 2vecb_(1)+3vecb_(2)-vecb_(3) , veca-(2)=vecb_(1)-2vecb_(2)+2vecb_(3) and veca_(3) =-2vecb_(1) + vecb_(2)-2vecb_(3) , if vecF = 3vecb_(1)-vecb_(2)+2vecb_(3) , then vector vecF in terms of veca_(1), veca_(2) and veca_(3) is

The base vectors veca_(1), veca_(2) and veca_(3) are given in terms of base vectors vecb_(1), vecb_(2) and vecb_(3) as veca_(1) = 2vecb_(1)+3vecb_(2)-vecb_(3) , veca_(2)=vecb_(1)-2vecb_(2)+2vecb_(3) and veca_(3) =2vecb_(1) + vecb_(2)-2vecb_(3) , if vecF = 3vecb_(1)-vecb_(2)+2vecb_(3) , then vector vecF in terms of veca_(1), veca_(2) and veca_(3) is

The base vectors veca_(1), veca_(2) and veca_(3) are given in terms of base vectors vecb_(1), vecb_(2) and vecb_(3) as veca_(1) = 2vecb_(1)+3vecb_(2)-vecb_(3) , veca_(2)=vecb_(1)-2vecb_(2)+2vecb_(3) and veca_(3) =-2vecb_(1) + vecb_(2)-2vecb_(3) , if vecF = 3vecb_(1)-vecb_(2)+2vecb_(3) , then vector vecF in terms of veca_(1), veca_(2) and veca_(3) is

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

If veca, vecb are unit vectors such that |veca +vecb|=1 and |veca -vecb|=sqrt3 , then |3 veca+2vecb |=

If two vectors veca and vecb are such that |veca| = 3, |vecb| = 2 and veca.vecb = 6, find |veca+vecb| and |veca-vecb| .

If veca and vecb are two vectors such that |veca|=1, |vecb|=4, veca.vecb=2 . If vecc=(2veca xx vecb)-3vecb , then the angle between veca and vecc is

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc + vecc.veca is equal to