Home
Class 12
MATHS
y=Ae^(mx)+Be^(nx)...

y=Ae^(mx)+Be^(nx)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the second order derivative of the function Ae^(mx) + Be^(nx)

If y= Ae^(mx) + Be^(-mx) , show that (d^2y)/dx^2-m^2y=0 .

If y= A e^(mx) + B e^(nx) , show that y2-(m+n)y1+(mn)y =0

If u=A e ^(mx) +Be^(nx ) ,then y_2-( m+n) y_1+ mn y=

In each of the following cases, from the differential equation by eliminating the arbitrary constants from the given equation: y=Ae^(-mx)+Be^(-mx) , A and B are arbitrary constants.

If y=ae^(mx)+be^(-mx)," then "y_(2)=

If y=ae^(mx)+be^(-mx) , then y_(2) is :

If y=ae^(nx)+be^(-nx) , then prove that y''=n^(2)y .