Home
Class 9
MATHS
f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))-1...

f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))-1

Promotional Banner

Similar Questions

Explore conceptually related problems

The inverse of the function f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))

The inverse of the function f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))

The inverse of the function f(x)=(e^(x)-2e^(-x))/(e^(x)+2e^(-x))+1 is

Let f:R rarr R be a function defined by f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) then -(1) fis bijection (2) fis an injection only (3) f is a surjection fis neither injection nor a surjection

If f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))+2 , then the value of f^(-1)(x) is -

f(x) = (e^(x)-e^(-x))/(e^(x)+e^(-x))+2 . The inverse of f(x) is ........

The inverse of the function f:R to {x in R: x lt 1}"given by "f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x)), is

The function f:R rarr R defined by f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) is

Let f:R rarr R" be defined by "f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)). Then

The inverse of the function f:R rarr{x in R:x<1} given by f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x)), is (1)/(2)log(1+x)/(1-x) (b) (1)/(2)log(2+x)/(2-x)(1)/(2)log(1-x)/(1+x) (d) None of these