Home
Class 12
MATHS
If f(x)=2e^x-ae^(-x)+(2a+1)x-3 monotonic...

If `f(x)=2e^x-ae^(-x)+(2a+1)x-3` monotonically increases for `AA x in R`, then find range of values of `a`

Promotional Banner

Similar Questions

Explore conceptually related problems

if f(x) =2e^(x) -ae^(-x) +(2a +1) x-3 monotonically increases for AA x in R then the minimum value of 'a' is

if f(x) =2e^(x) -ae^(-x) +(2a +1) x-3 monotonically increases for AA x in R then the minimum value of 'a' is

if f(x) =2e^(x) -ae^(-x) +(2a +1) x-3 monotonically increases for AA x in R then the minimum value of 'a' is

If f(x)=2e^(x)-c ln x monotonically increases for every x in(0,oo), then the true set of values of c is

Find the range of values of a if f(x)=2e^x-a e^(-x)+(2a+1)x-3 is monotonically increasing for all values of xdot

Find the range of values of a if f(x)=2e^x-a e^(-x)+(2a+1)x-3 is monotonically increasing for all values of xdot

f(x)=(x-2)|x-3| is monotonically increasing in

If f(x) = x^(3) + (a – 1) x^(2) + 2x + 1 is strictly monotonically increasing for every x in R then find the range of values of ‘a’

f(x) = (x - 2) |x - 3| is monotonically increasing in

If f(x)=kx^(3)-9x^(2)+9x+3 is monotonically increasing in R , then