Home
Class 12
MATHS
The domain of the function f(x)=(sin^(-1...

The domain of the function `f(x)=(sin^(-1)(3-x))/("In"(|x|-2))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(sin^(-1)(3-x))/(ln(|x|-2)) is

The domain of the function f(x) = (sin^(-1)(3-x))/(ln(|x|-2)) is a) [2,4] b) (2,3) cup (3,4] c) [2,oo) d) (-oo,-3)cup [2,oo)

The domain of the function f(x)=(sin^(-1)(3-x))/(I n(|x|-2))i s [2,4] (b) (2,3)uu(3,4] (c) (0,1)uu(1,oo) (d) (-oo,-3)uu(2,oo)

The domain of the function f(x)=(sin^(-1)(3-x))/(I n(|x|-2)i s (a) [2,4] (b) (2,3)uu(3,4] (c) (0,1)uu(1,oo) (d) (-oo,-3)uu(2,oo)

The domain of the function f(x)=(sin^(-1)(3-x))/(I n(|x|-2)i s (a) [2,4] (b) (2,3)uu(3,4] (c) (0,1)uu(1,oo) (d) (-oo,-3)uu(2,oo)

The domain of the function f(x)=(sin^(-1)(3-x))/(log_(e)(|x|-2)) , is

The domain of the function f(x)=(sin^(-1)(3-x))/(In(x)-2))is[2,4](b)(2,3)uu(3,4](c)(0,1)uu(1,oo)(d)(-oo,-3)uu(2,oo)

The domain of the function f(x)=(sin^(-1)(3-x))/(log_(e)(|-x|-2)) , is

The domain of the function : f(x)=(sin^(-1)(x-3))/(sqrt(9-x^2)) is :

Find the domain of the function: f(x)=(sin^(-1)x)/x