Home
Class 12
MATHS
Let f(x)=x^3+ax^2+bx+5sin^2x be an incre...

Let `f(x)=x^3+ax^2+bx+5sin^2x` be an increasing function in the set of real numbers `R` Then `a` and `b` satisfy the condition

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x^(3)+ax^(2)+bx+5 sin^(2)x be an increasing function on the set R. Then,

If f(x)=x^3+a x^2+b x+5sin^2x\ is a strictly increasing function on the set of real numbers then a and b must satisfy the relation:

IF f(x)=x^(3)+ax^(2)+bx+5sin^(2)x is a strictly increasing function on the set of real numbers then a and b must satisfy the relation a^(2)-3b+15<=0 (b) a^(2)-3b+20<=0a^(2)-3b+25<=0 (d) a^(2)-3b+30<=0

Let f(x)=x^3+a x^2+b x+5sin^2x be an increasing function on the set Rdot Then find the condition on a and b .

Let f(x)=x^3+a x^2+b x+5sin^2x be an increasing function on the set Rdot Then find the condition on a and b .

Let f(x)=x^3+a x^2+b x+5sin^2x be an increasing function on the set Rdot Then find the condition on a and b .

If f(x) =x^(3) +ax^(2)+bx +5 sin^(2) x is an increasing function on R, then

Let f(x)=x^3+kx^2+5x+4sin^2x be an increasing function on x in R. Then domain of k is