Home
Class 12
MATHS
f(x)=log(x)(log x)sin xdx=e^(2x)...

f(x)=log_(x)(log x)sin xdx=e^(2x)

Promotional Banner

Similar Questions

Explore conceptually related problems

int x log sin xdx

If f (x) = log_(x) (log x) , then f'(x) at x = e is …….. .

If f(x)=log_(x)(ln x) then f'(x) at x=e is

If f (x) = log_(x) (log x) , then f'(x) at x = e is …….. .

If f(x)=log_(x^(3))(log x^(2)), then f'(x) at x=e is

Find the derivative of f(x)=log_(x)sin x^2 + (sin x^2) ^(log_ex) w.r.t. phi(x)= log_(e)x

Find the range of f(x)=(log)_(e)x-(((log)_(e)x)^(2))/(|(log)_(e)x|)

Find the range of f(x)=log_(e)x-((log_(e)x)^(2))/(|log_(e)x|)

If f(x)=log_(x)(log_(e)x) , then the value of f'(e ) is -