Home
Class 12
MATHS
Prove that: sin^-1(3/5)-cos^-1(12/13)=si...

Prove that: `sin^-1(3/5)-cos^-1(12/13)=sin^-1(16/65)`

Text Solution

Verified by Experts

LHS
`sin^(-1)(3/5)-cos^(-1)(12/13)`
Let`cos^(-1)(12/13)=theta`
`costheta=12/13`
`sintheta=5/13`
`theta=sin^(-1)(5/13)`
`sin^(-1)(3/5)-theta`
`sin^(-1)(3/5)-sin^(-1)(5/13)`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)

Show that sin^-1(3/5)-cos^-1(12/13)=cosec^-1(65/16)

Prove that sin^-1(4/5)+ sin^-1(5/13)+ sin^-1(16/65)= pi/2

Prove that sin^-1(4/5) + cos^-1 (12/13) = tan^-1 (63/16)

Prove that sin^(-1)(4/5)+sin^(-1)(5/13)+sin^(-1)(16/65)=pi/2 .

Prove that sin^(-1)(4/5)+sin^(-1)(5/13)+sin^(-1)(16/65)=pi/2 .

Show that sin^-1 (3/5)+cos^-1(12/13)=cos^-1(33/65)=sin^-1(56/65)

Prove thate sin^(-1)((3)/(5))-cos^(-1)((12)/(13))=sin^(-1)((16)/(65))

Prove that: sin^(-1)((3)/(5))+cos^(-1)((12)/(13))=sin^(-1)((56)/(65))

Prove that : sin^-1(12/13) + cos^-1(3/5) = sin^-1(56/65)