Home
Class 11
MATHS
In the parallelogram A B C D, vec(AC)^2 ...

In the parallelogram `A B C D, vec(AC)^2 -vec (BD)^2 =`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a parallelogram ABCD. Prove that vec(AC)+ vec (BD) = 2 vec(BC)

bar(AC) " and " bar(BD) are the diagonals of the parallelogram ABCD. Prove that, vec(AC)+vec(BD)=2vec(BC) " and " vec(AC)-vec(BD)=2vec(AB)

A parallelogram ABCD. Prove that vec(AC)+ vec (BD) = 2 vec(BC) '

Given a parallelogram ABCD . If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| = c , then vec(DB) . vec(AB) has the value

Given a parallelogram ABCD . If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| = c , then vec(DB) . vec(AB) has the value

If ABCD is a parallelogram, then vec(AC) - vec(BD) =

If ABCD is a parallelogram, then vec(AC) - vec(BD) =

vec(AC) and vec(BD) are the diagonals of a parallelogram ABCD. Prove that (i) vec(AC) + vec(BD) - 2 vec(BC) (ii) vec(AC) - vec(BD) - 2vec(AB)

If vec Avec C and vec Bvec D are the diagonals of the parallelogram ABCD , show that vec Avec C+vec Bvec D = 2 vec Bvec C .

One of the diagonals of parallelogram ABCD with vec(a) and vec(b) are adjacent sides is vec(a) +vec(b) . The other diagonal BD is …………