Home
Class 10
MATHS
Fnd the value: ((243)^(n/5) 3^(2n+1))/(9...

Fnd the value: `((243)^(n/5) 3^(2n+1))/(9^n.3^(n-1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ((243)^(n/5). 3^(2n+1))/(9^(n).3^(n-1)) is:

Find the value of (3^(n)xx3^(2n+1))/(9^(n)xx3^(n-1)) .

Find the value of (3^n × 3^(2n + 1))/(3^(2n) × 3^(n - 1))

If ((243)^((n)/(5))3^(2n+1))/(9^(n)3^(n-1))=x, then the value of x is

Simplify the following: (3^(n)x9^(n+1))/(3^(n-1)x9^(n-1)) (ii) (5x25^(n+1)-25x5^(2n))/(5x5^(2n+3)-(25)^(n+1))