Home
Class 11
MATHS
Let f(x)=int0^g(x) dx/sqrt(1+t^2) where ...

Let `f(x)=int_0^g(x) dx/sqrt(1+t^2)` where `g(x) =int_0^cosx (1+sint^2) dt.` Also `h(x) =e^(-|x|)` and `l(x)=x^2 sin(1/x)` if `x != 0` and `l(0)` then `f'(pi/2)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_0^g(x) dt/sqrt(1+t^2) where g(x) =int_0^cosx (1+sint^2) dt. Also h(x) =e^(-|x|) and l(x)=x^2 sin(1/x) if x != 0 and l(0)=0 then f'(pi/2) equals:

If f(x)=int_0^x (sint)/(t)dt,xgt0, then

If f(x)=int_0^x(sint)/t dt ,x >0, then

If f(x)=int_0^x(sint)/t dt ,x >0, then

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

What is F^1(x) if F(x)= int_0^x e^(2t)sin 3t dt

Let f(x)=int_2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Then the value of g'(0)

Let f(x)=int_2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Then the value of g'(0)