Home
Class 11
MATHS
Suppose f is continuous and satisfies f(...

Suppose f is continuous and satisfies `f(x) + f(-x)=x^2` then the integral `int _-1^1 f(x) dx` has the value equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a function satisfying f'(x)=f(x) with f(0)=1 and g(x) be a function that satisfies f(x)+g(x)=x^(2) . Then the value of the integral int_(0)^(1) f(x)g(x) dx is equal to -

If f(x)=min{|x-1|,|x|,|x+1|, then the value of int_-1^1 f(x)dx is equal to

If f(x)=min{|x-1|,|x|,|x+1|, then the value of int_-1^1 f(x)dx is equal to

Let f(x) be a function satisfying f'(x) = f(x) with f(0) = 1 and g(x) be a function that satisfies f(x) + g(x) = x^2 . Then the value of the integral int_0^1 f(x) g (x) dx is :

If f(x) and g(x) are continuous functions satisfying f(x)=f(a-x) and g(x)+g(a-x)=2 then what is int_0^a f(x) g(x) dx equal to

If f(x) is a continuous function satisfying f(x)=f(2-x) , then the value of the integral I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx is equal to

If f(x) is a continuous function satisfying f(x)=f(2-x) , then the value of the integral I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx is equal to

A continuous real function f satisfies f(2x)=3f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx