Home
Class 12
MATHS
sqrt(5-log2x)=3-log2x...

`sqrt(5-log_2x)=3-log_2x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of solution satisfying,sqrt(5-log_(2)x)=3-log_(2)x are 1(b)2(c)3(d)

The number of integral value of x satisfying the following system of inequalities (sqrt(log_(2)^(2)x-3log_(2)x+2))/(log_(5)((1)/(3)log_(3)5-1))>=&x-sqrt(x)-2>=0 is 0 (2) 1 (3) 2 (4) 3

Sum of Integral values of x 'satisfying sqrt((log_(2)x+log_(x)(16x)-5)(log_(2)x))+sqrt((log_(2)x+log_(x)(2x)-3)(log_(2)x))=1 is

log_(sqrt(2))sqrt(x)+log_(2)x log_(4)(x^(2))+log_(8)(x^(3))+log_(16)(x^(4))=40 then x is equal to

sqrt(log_(2)(2x^(2))log_(4)(16x))=log_(4)x^(3)

The equation x^((3)/4 (log_2x)^2+log_2 x -(5)/(4))=sqrt(2) has :

The equation x^((3)/4 (log_2x)^2+log_2 x -(5)/(4))=sqrt(2) has :

Solve for x, log_(x) 15 sqrt(5) = 2 - log_(x) 3 sqrt(5) .

The equation x^((3//4) (log_(2)x)^(2) + log_(2)x - (5//4)) = sqrt(2) has: