Home
Class 11
MATHS
Let h(x)=(fog)(x)+K where K is any const...

Let `h(x)=(fog)(x)+K where K `is any constant . If `d/dx(h(x))=-(sinx)/(cos^2(cosx)`then compule the valu of `j(0) where j(x) =int_g(x)^f(x) f(t)/g(t) dt,` where f and g are trigonometric function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g(x)=int_(0)^(x)f(t)dt where fis the function whose graph is shown.

Let g(x) = int_(x)^(2x) f(t) dt where x gt 0 and f be continuous function and 2* f(2x)=f(x) , then

If f(x)=(g(x))+(g(-x))/2+2/([h(x)+h(-x)]^(-1)) where g and h are differentiable functions then f'(0)

Let function F be defined as f(x)= int_1^x e^t/t dt x > 0 then the value of the integral int_1^1 e^t/(t+a) dt where a > 0 is

f(x)=(cos^2x)/(1+cosx+cos^2x) and g(x)=ktanx+(1-k)sinx-x , where k in R, g'(x)=

Find k if fog=gof where f(x)=2x+1 , g(x)=x+k .

Let f(x) and g(x) be differentiable functions such that f(x)+ int_(0)^(x) g(t)dt= sin x(cos x- sin x) and (f'(x))^(2)+ (g(x))^(2) = 1,"then" f(x) and g (x) respectively , can be