Home
Class 12
MATHS
[" If "f(x)=(sqrt(1+px)-sqrt(1-px))/(x),...

[" If "f(x)=(sqrt(1+px)-sqrt(1-px))/(x),-1<=x<0],[quad =(2x+1)/(x-1),0<=x<=1]

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={((sqrt(1+px)-sqrt(1-px))/(x),,,-1 le x lt 0),((2x+1)/(x-2),,,0le x le 1):} is continuous in the interval [-1,1], then p equals :

f(x) = (sqrt(1+px) - sqrt(1 - px))/(x), -1 le x le 0 = (2x + 1)/(x-2), 0 le x le 1 is continuous in the interval [-1, 1], then p is :

If f(x) {: (=(sqrt(1+px) - sqrt(1- px))/x", if "-1/2 le x lt 0 ),(= 3x^(2) + 2x - 2 ", if " 0 le x lt 1 ):} is continuous on its domain , then : p =

f(x)={[(srt(1+px)-sqrt(1-px))/x,-1<=x<0],[(2x+1)/(x-2),0<=x<=1]}is continuous in the interval [-1, 1], then 'p' is equal to:,0

"Let "f(x)=(sqrt(x-2sqrt(x-1)))/(sqrt(x-1-1))x." Then"

The function f(x)=sqrt(1-sqrt(1-x^2))

Let f(x)=(sqrt(x-2sqrt(x-1)))/(sqrt(x-1)-1).x then

Let f(x)=(sqrt(x-2sqrt(x-1)))/(sqrt(x-1)-1)*x then