Home
Class 12
MATHS
" If "I(1)=int(e)^(2^(2))(dx)/(log x)" a...

" If "I_(1)=int_(e)^(2^(2))(dx)/(log x)" and "I_(2)=int_(1)^(2ex)dx," then "

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(1)=int_(e)^(e^(2))(dx)/(logx) and I_(2)=int_(1)^(2)(e^(x))/(x)dx then

If I_(1)=int_(e)^(e^(2))(dx)/(logx)andI_(2)=int_(1)^(2)(e^(x))/(x)dx, then

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

If I_(1)=int_(e )^(e^(2)) (dx)/(logx)"and "I_(2)=int_(1)^(2)(e^(x))/(x)dx ,then

If I_(1)=int_(e )^(e^(2)) (dx)/(log x) and I_(2)= int_(1)^(2)(e^(x))/(x)dx , then which of the following is correct ?

If I_(1) = int_e^(e^(2)) (dx)/(log x) and I_(2) = int_1^(2) (e^(x)dx)/(x) then

If I _(1) = int _(e) ^(e ^(2)) (dx )/( ln x ) and I _(2) = int _(1) ^(2) (e ^(x))/(x) dx, then