Home
Class 8
MATHS
a.) 2^(2x+2) = 4^(2x-1) b.) 7^x =343...

a.) `2^(2x+2) = 4^(2x-1)` b.) `7^x =343`

Promotional Banner

Similar Questions

Explore conceptually related problems

(7 ^ (2x + 3) + 7 ^ (2x + 1)) / (7 ^ (2x + 2) + 7 ^ (2x + 1))

Solve for x : (49)^(x + 4) = 7^(2) xx (343)^(x + 1)

Number of real roots of the equation 2^x=2^(x-1)+2^(x-2)=7^x+7^(x-1)+7^(x-2) is (A) 4 (B) 2 (C) 1 (D) 0

Number of real roots of the equation 2^x+2^(x-1)+2^(x-2)=7^x+7^(x-1)+7^(x-2) is (A) 4 (B) 2 (C) 1 (D) 0

a (x) = 3x ^ (6) + 7x ^ (4) + 9x ^ (2) + 2x + 1, b (x) = 2x + 2

int (2x ^ (3) + 3x ^ (2) + 4x + 5) / (2x + 1) dx equls to: (A) (x ^ (3)) / (2) + (x ^ (2)) / (2) +3 (x) / (2) + (7) / (4) ln (2x + 1) + C (B) 5 (x ^ (3)) / (2) + 6 (x) / (2) + (7) / (4) ln (2x + 1) + C (C) 3 (x ^ (3)) / (2) + 3 (x ^ (2)) / (2) + (7 ) / (4) ln (2x + 1) + C (D) (x ^ (2)) / (2) + 3 (x) / (2) + (7) / (4) ln (2x + 1) + C

Simplyfy: (3x^(2) + 5x - 7)(x -1)- (x^(2) - 2x +3)(x + 4)