Home
Class 9
MATHS
" (iv) "sqrt(2)x-1...

" (iv) "sqrt(2)x-1

Promotional Banner

Similar Questions

Explore conceptually related problems

Equation of a line which is tangent to both the curve y=x^(2)+1 and y=x^(2) is y=sqrt(2)x+(1)/(2) (b) y=sqrt(2)x-(1)/(2)y=-sqrt(2)x+(1)/(2)(d)y=-sqrt(2)x-(1)/(2)

Domain of f(x) = sqrt(2x-1) + sqrt(13) cos^(-1) ((2x-1)/2) is

sqrt(x^(2))

sqrt x = sqrt(2x - 1) "then" x = ...

Simplify : (x + sqrt(x^(2) - 1))/(x - sqrt(x^(2) -1)) + (x - sqrt(x^(2) -1))/(x + sqrt(x^(2) -1)) If the result of the simplification is equal to 14, then find the value of x

Simplify (x+sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))+(x-sqrt(x^(2)-1))/(x+sqrt(x^(2)-1))

(x-sqrt(2))^(2)-sqrt(2)(x+1)=0