Home
Class 12
MATHS
" Q19.If xylog "(x+y)=1" then,prove that...

" Q19.If xylog "(x+y)=1" then,prove that "(dy)/(dx)=-(y)/(x)((x^(2)y+x+y)/(xy^(2)+x+y))

Promotional Banner

Similar Questions

Explore conceptually related problems

If xy log(x + y) = 1 , then prove that (dy)/(dx) = -(y(x^(2)y + x + y))/(x(xy^(2) + x + y)) .

If xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))

xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))

If xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))=

If x ylog(x+y)=1 , prove that (dy)/(dx)=-(y(x^2y+x+y))/(x(x y^2+x+y))

If x=y log(xy) , then prove that (dy)/(dx) = (y (x-y))/(x(x+y)) .

(dy)/(dx)=(x^2y+y)/(xy^2+x)

If x y\ log(x+y)=1 , prove that (dy)/(dx)=-(y(x^2y+x+y))/(x(x y^2+x+y)) .

If sec((x+y)/(x-y))=a, prove that (dy)/(dx)=(y)/(x)

If xy=e^(x-y) , prove that (dy)/(dx)=(y(x-1))/(x(y+1)) .