y=e^(3x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(x) sin 3x ,then (d^(2)y)/(dx^(2))=

Find the derivative of y = sin e^(3x)

Find the derivative of y = sin e^(3x) .

If y=e^(x+3 log x) , then dy/dx=?

If y = e^(x + 3 log x) prove that dy/dx = x^2 (x+3) e^x

4 dy/dx + 8y = 5 e^(-3x)

Directions: In the following questions, A statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as Solution of the differential equation (dy)/(dx)=e^(3x-2y)+x^2e^(-2y) is (e^(2y))/(2)=(e^(3x))/(3)+(x^2)/(2)+C Reason (R) : (dy)/(dx)=e^(3x-2y)+x^2e^(-2y) (dy)/(dx)=e^(-2y)(e^(3x)+x^2) separating the variables e^(2y)dy=(e^(3x)+x^2)dx int e^(2y)dy=int(e^(3x)+x^2)dx (e^(2y))/(2)=(e^(3x))/(3)+(x^3)/(3)+C .

if y=e^(3log x)th en(dy)/(dx)

y = e ^ (2x) + e ^ (3x)