Home
Class 9
MATHS
[(1)/(x)|1]xy(z^(2)+1)+z(x^(2)+y^(2))...

[(1)/(x)|1]xy(z^(2)+1)+z(x^(2)+y^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(8)zx^(2)y-(1)/(7)z^(2)xy+(1)/(6)zy^(2)x-(1)/(5)zy^(2)x^(2)-(1)/(4)xyz^(2)+(1)/(3)xy^(2)z-(1)/(2)x^(2)y^(2)z

If x + y + z = xyz , prove that x(1 -y^(2)) (1- z^(2))+ y(1- z^(2))(1- x^(2)) +z(1-x^(2)) (1- y^(2)) = 4xyz .

If xy + yz + zx = 1 , show that x/(1-x^(2)) +y/(1-y^(2)) + z/(1-z^(2))= 4xyz/((1-x^(2))(1-y^(2)) (1-z^(2)))

tan^(-1)""(x-y)/(1+xy)+tan^(-1)""(y-z)/(1+yz)+tan^(-1)""(z-x)/(1+zx) =tan^(-1)""(x^(2)-y^(2))/(1+x^(2)y^(2))+tan^(-1)""(y^(2)-z^(2))/(1+y^(2)z^(2))+tan^(-1) ""(z^(2)-x^(2))/(1+z^(2)x^(2))

D=|[(1)/(z),(1)/(z),-(x+y)/(z^(2))-(y+z)/(x^(2)),(1)/(x),(1)/(x)-(y(y+z)/(x^(2)z)),(x+2y+z)/(x)z,-(y(x+y)/(xz^(2))] then,the incorrect statement is -

If xy+yz+xz=1, then prove that (x)/(1-x^(2))+(y)/(1-y^(2))+(z)/(1-z^(2))=(4xyz)/((1-x^(2))(1-y^(2))(1-z^(2)))

If xy + yz + zx = 1 , show that x/(1-x^(2)) +y/(1-y^(2)) + z/(1-z^(2))= (4xyz)/((1-x^(2))(1-y^(2)) (1-z^(2)))

If xy+yz+zx=1 show that (x)/(1-x^(2))+(y)/(1-y^(2))+(z)/(1-z^(2))=(4xyz)/((1-x^(2))(1-y^(2))(1-z^(2)))