Home
Class 11
MATHS
sumsum(0leqiltjleqn) .^nCi.^nCj is equal...

`sumsum_(0leqiltjleqn) .^nC_i.^nC_j` is equal to
`1/2(2^(2n)+.^(2n)C_n)`
`1/2(2^(2n)-.^(2n)C_n)`
`2^(2n)+.^(2n)C_n`
`2^(2n)-.^(2n)C_n`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (.^(2n)C_0)^2-(.^(2n)C_1)^2+(.^(2n)C_2)^2-..+(.^(2n)C_(2n))^2 = (-1)^n.^(2n)C_n .

""^(2n)C_(n+1)+2. ""^(2n)C_(n) + ""^(2n) C_(n-1) =

Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-2)C_(n)+^(n)C_(2)^(2n-4)C_(n)-...=2^(n)

Prove that (^(2n)C_0)^2+(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

Prove that (^(2n)C_0)^2-(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

The value of (.^(n)C_(0))/(n)+(.^(n)C_(1))/(n+1)+(.^(n)C_(2))/(n+2)+"..."+(.^(n)C_(n))/(2n)

Prove that ^nC_0 "^(2n)C_n-^nC_1 ^(2n-2)C_n +^nC_2 ^(2n-4)C_n =2^n

(n+2)C_(0)(2^(n+1))-(n+1)C_(1)(2^(n))+(n)C_(2)(2^(n-1))- is equal to