Home
Class 11
MATHS
If underset(r=0)overset(n)sum(-1)^(r ).....

If `underset(r=0)overset(n)sum(-1)^(r )..^(n)C_(r)[(1)/(2^(r))+(3^(r))/(2^(2r))+(7^(r))/(2^(3r))+"……..""to m terms"] = k(1-1/(2^(mn)))` , then k =

Promotional Banner

Similar Questions

Explore conceptually related problems

underset(r=0)overset(n)(sum)(-1)^(r).^(n)C_(r)[(1)/(2^(r))+(3^(r))/(2^(2r))+(7^(r))/(2^(3r))+(15^(r))/(2^(4r))+ . . .m" terms"]=

underset(r=0)overset(n)(sum)(-1)^(r).^(n)C_(r)[(1)/(2^(r))+(3^(r))/(2^(2r))+(7^(r))/(2^(3r))+(15^(r))/(2^(4r))+ . . .m" terms"]=

underset(r=0)overset(n-1)(sum)(.^(n)C_(r))/(.^(n)C_(r)+.^(n)C_(r+1)) equals

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

Prove that underset(r = 0) overset (n)(sum) 3^(r) ""^(n)C_(r) = 4^(n)

underset(r=1)overset(n)sum ( r )/(r^(4)+r^(2)+1) is equal to